Preparation and Resolution of a Series of Cobalt(III) Complexes Containing 2,2'-Biimidazole and Ethylenediamine

Hideaki Kanno,* Satoru Manriki, Emiko Yamazaki, Shunji Utsuno, and Junnosuke Fujita†

Department of Chemistry, Faculty of Science, Shizuoka University, Ooya, Shizuoka 422 †Division of Natural Sciences, International Christian University, Oosawa, Mitaka 181

(Received March 5, 1996)

A new series of cobalt(III) complexes of the type $[Co(H_2biim)_n(en)_{3-n}]^{3+}$ ($H_2biim = 2,2'$ -biimidazole; n = 1 - 3) was obtained. All of the complexes were resolved into their antipodes by SP-Sephadex column chromatography. The absorption, circular dichroism, and 1H NMR spectra of the complexes in aqueous solutions were dependent on the pH due to deprotonation of the imino protons of H_2 biim. The pK_{a1} and pK_{a2} values for $[Co(H_2biim)(en)_2]^{3+}$ were obtained as 5.9 and 9.9, respectively, from the absorption spectra in aqueous solutions. The optically active deprotonated complexes, $(-)_{589}$ - $[Co(Hbiim)_3]\cdot 2H_2O$ and $(-)_{589}$ - $[Co(biim)_3]\cdot 2H_2O$, were also isolated from weakly and strongly basic aqueous solutions, respectively, of $(-)_{589}$ - $[Co(H_2biim)_3](NO_3)_3\cdot H_2O$.

A bidentate ligand, 2,2'-biimidazole (H₂biim)¹⁾ forms an almost planar chelate ring as confirmed by X-ray analyses of such complexes as *trans*-[Ni(H₂biim)₂(H₂O)₂] (NO₃)₂²⁾ and [Fe(H₂biim)₃] CO₃.³⁾ Although H₂biim is known to form complexes with many kinds of metal ions,^{3–8)} no optically active complex has ever been known. This paper reports on the preparation and properties of optically active cobalt-(III) complexes containing H₂biim.⁹⁾ To our knowledge, no cobalt(III) complex with H₂biim has been reported.¹⁰⁾

The H_2 biim ligand has two imino protons and can coordinate to a metal ion as a neutral molecule (H_2 biim), a monoanion (Hbiim $^-$), and a dianion (biim $^{2-}$) by deprotonation of the imino proton(s). Although a number of multinuclear complexes with biim $^{2-}$ acting as a bridging ligand were isolated, $^{7,8,11,12)}$ only a few mononuclear complexes containing biim $^{2-}$ have been isolated. This paper also describes the isolation of the optically active deprotonated complexes, $[Co(Hbiim)_3]$ and $[Co(biim)_3]^{3-}$.

Experimental

Preparation of 2,2'-Biimidazole (H2biim). This ligand was prepared according to the literature method.⁵⁾ The free ligand is soluble in N,N-dimethylformamide (DMF) and ethylene glycol, but hardly soluble in water. The ligand was converted into the sulfate, which is soluble in water. A 2 mol dm⁻³ H₂SO₄ solution (100 cm³) of H₂biim (10 g) was mixed with acetone (100 cm³). The mixture was cooled in an ice bath to give crystals, which were collected by filtration, washed with a mixture of acetone and water (1:1) and then acetone, and air-dried. Recrystallization from a mixture of acetone and water (1:1) gave colorless needles of H₂biim·H₂SO₄·2H₂O. Found: C, 27.10; H, 4.29; N, 20.79%. Calcd for C₆H₁₂N₄O₆S: C, 26.86; H, 4.52; N, 20.89%.

Preparation and Resolution of the Complexes. [Co- $(H_2biim)_3$]³⁺. A solution containing K_3 [Co(CO₃)₃]¹³⁾ (10 mmol) and $H_2biim \cdot H_2SO_4 \cdot 2H_2O$ (9.5 g, 35 mmol) in a mixture of DMF (75

cm³) and water (150 cm³) was kept at 80 °C for 3 h with stirring. The resulting orange solution was diluted with 10^{-2} mol dm³ HNO₃ (5 dm³) and poured on a column (ϕ 3.5×15 cm) of SP-Sephadex C-25. The adsorbed species were eluted with a 1 mol dm³ NH₄NO₃ (pH 2, HNO₃) solution. The orange eluate was concentrated to ca. one-third of its original volume under reduced pressure at 50 °C. Upon storing the concentrate in a refrigerator for 2 d, orange crystals were formed, collected by filtration, washed with methanol, and then airdried. The complex was recrystallized from 10^{-2} mol dm³ HNO₃ (70 °C). Yield: 5.3 g (82%). Found: C, 33.30; H, 2.72; N, 32.30%. Calcd for [Co(H₂biim)₃](NO₃)₃ = C₁₈H₁₈N₁₅O₉Co: C, 33.39; H, 2.81; N, 32.46%.

The complex was completely resolved by column chromatography. An aqueous solution of the complex (0.5 g) was applied on a column (ϕ 3.5×70 cm) of SP-Sephadex. Elution with a 0.15 mol dm⁻³ Na₂[Sb₂{(+)₅₈₉-tartrate}₂] solution gave two separate bands of (+)₅₈₉- and (-)₅₈₉-isomers in the order of elution. Each eluate of the bands was diluted with 10^{-2} mol dm⁻³ HNO₃ (10 dm³), and poured again on a small column (ϕ 2.2×7 cm) of SP-Sephadex. The adsorbed complex was eluted with a 1 mol dm⁻³ NH₄NO₃ (pH 2, HNO₃) solution. The eluate was concentrated under reduced pressure and stored in a refrigerator to yield crystals of the optically active complex, which were recrystallized from 10^{-2} mol dm⁻³ HNO₃ (70 °C). Found for the (-)₅₈₉-isomer: C, 32.52; H, 2.78; N, 31.71%. Calcd for [Co(H₂biim)₃](NO₃)₃·H₂O = C₁₈H₂₀N₁₅O₁₀Co: C, 32.49; H, 3.03; N, 31.58%.

(-)₅₈₉-[Co(Hbiim)₃]·2H₂O. To an aqueous solution (80 cm³) of (-)₅₈₉-[Co(H₂biim)₃](NO₃)₃·H₂O (2.1 g) was added 28% aqueous ammonia (50 cm³) with stirring to yield orange crystals quantitatively. The crystals were collected by filtration, washed with warm water (60 °C), and then dried over P₄O₁₀. Yield: 1.5 g (96%). Found: C, 43.42; H, 3.69; N, 34.01%. Calcd for C₁₈H₁₉N₁₂O₂Co: C, 43.73; H, 3.87; N, 34.00%. The complex is hardly soluble in water and common organic solvents, but slightly soluble in ethanol. This Hbiim⁻ complex was also obtained from (-)₅₈₉-[Co-(H₂biim)₃](NO₃)₃·H₂O dissolved in an ammonium chloride–aqueous ammonia buffer solution of pH 8.

($-)_{589}$ -Ba_{1.5}[Co(biim)₃]·2H₂O. ($-)_{589}$ -[Co(Hbiim)₃]·2H₂O (1.5 g, 3 mmol) was dissolved in 2 mol dm⁻³ NaOH (60 cm³). To the resulting yellow solution was added an aqueous solution (40 cm³) of BaCl₂·2H₂O (1.2 g, 5 mmol) with stirring to yield yellow crystals, which were collected, washed with warm water (60 °C), and then dried over P₄O₁₀. Yield: 1.9 g (90%). Found: C, 31.13; H, 2.50; N, 23.81%. Calcd for C₁₈H₁₆N₁₂O₂Ba_{1.5}Co: C, 31.00; H, 2.31; N, 24.10%. The complex is soluble in ethanol, but hardly soluble in water.

 $[Co(H_2biim)_2(en)]^{3+}$. A solution containing K[Co- $(CO_3)_2(en)$]· H_2O^{13} (0.9 g, 3 mmol) and H_2biim · H_2SO_4 · $2H_2O$ (1.7 g, 6.3 mmol) in a mixture of DMF (15 cm³) and water (30 cm³) was kept at 60 °C for 24 h with stirring. The resulting solution was diluted with 10^{-2} mol dm⁻³ HCl (1 dm³) and applied on a column (ϕ 2.2×140 cm) of SP-Sephadex. Elution with 0.2 mol dm⁻³ Na₂SO₄ (pH 2, H₂SO₄) gave two orange bands. The faster moving small band was found to contain $[Co(H_2biim)_3]^{3+}$. The eluate of the slower moving band was diluted with 10^{-2} mol dm⁻³ HCl, and then poured again on a small column ($\phi 2.2 \times 5$ cm) of SP-Sephadex. The adsorbed complex was eluted with 2 mol dm^{-3} HCl. The eluate was concentrated to a small volume under reduced pressure and then mixed with acetone to give orange crystals. They were collected, washed with acetone, and then air-dried. The complex was recrystallized from a mixture of 10^{-2} mol dm⁻³ HCl and acetone (1:3). Yield: 0.9 g (55%). Found: C, 30.49; H, 4.76; N, 25.60%. Calcd for $[Co(H_2biim)_2(en)]Cl_3 \cdot 3H_2O = C_{14}H_{26}N_{10}O_3Cl_3Co$: C, 30.70; H, 4.78; N, 25.57%.

The complex (0.1 g) was completely resolved by a method similar to that for $[\text{Co}(\text{H}_2\text{biim})_3]^{3+}$ using a column $(\phi 2.2 \times 140 \text{ cm})$ of SP-Sephadex. The $(-)_{589}$ -isomer was eluted faster. The optically active complex was isolated as the chloride by a method similar to that for the racemate. Found for the $(-)_{589}$ -isomer: C, 30.58; H, 4.52; N, 25.71%. Calcd for $(-)_{589}$ - $[\text{Co}(\text{H}_2\text{biim})_2(\text{en})]\text{Cl}_3 \cdot 3\text{H}_2\text{O}$: C, 30.70; H, 4.78; N, 25.57%.

[Co(H₂biim)(en)₂]³⁺. A solution containing [Co(CO₃)(en)₂]-Cl·H₂O¹³⁾ (2.9 g, 10 mmol) and H₂biim·H₂SO₄·2H₂O (2.7 g, 10 mmol) in a mixture of DMF (75 cm³) and water (150 cm³) was kept at 60 °C for 24 h with stirring. The resulting solution was diluted with 10^{-2} mol dm⁻³ HCl (5 dm³) and poured on a column (ϕ 3.5×15 cm) of SP-Sephadex. The adsorbed species were eluted with a 2 mol dm⁻³ HCl solution. The eluate of a large orange band was collected and concentrated to a small volume under reduced pressure. The concentrate was mixed with acetone to give orange crystals. They were collected, washed with acetone, and then airdried. The complex was recrystallized from a mixture of 10^{-2} mol dm⁻³ HCl and ethanol (1:4). Yield: 3.0 g (69%). Found: C, 27.35; H, 5.53; N, 25.22%. Calcd for [Co(H₂biim)(en)₂]Cl₃·H₂O = C₁₀H₂₄N₈OCl₃Co: C, 27.44; H, 5.53; N, 25.60%.

The optically active complex was obtained as the chloride by the same method as that for $[Co(H_2biim)_2(en)]^{3+}$. The $(-)_{589}$ -isomer was eluted faster from the column. Found for the $(-)_{589}$ -isomer: C, 27.27; H, 5.58; N, 25.43%. Calcd for $(-)_{589}$ - $[Co(H_2biim)(en)_2]$ - Cl_3 · H_2O : C, 27.44; H, 5.53; N, 25.60%.

Measurements. Absorption and circular dichroism (CD) spectra were recorded on a Shimadzu MPS-50L spectrophotometer and a JASCO J-40 spectropolarimeter, respectively. Optical rotations were measured with a Union PM-101 polarimeter. 1H NMR spectra in D_2O solutions were recorded on a Varian EM-390 spectrometer using sodium 2,2'-dimethyl-2-silapentane-5-sulfonate (DSS) as an internal standard.

Spectrophotometric titration for $[Co(H_2biim)(en)_2]Cl_3 \cdot H_2O$ was carried out in aqueous solutions at 25 °C using a Shimadzu MPS-

50L spectrophotometer. The pH of the solutions was adjusted with aqueous solutions of HCl or NaOH, or buffer solutions. ¹⁴⁾ The pH measurements were made with a Horiba F-8L pH meter. Ionic strengths (I=1.0) of the solutions were adjusted with an aqueous solution of NaCl. The concentrations of the complex were about 3 mmol dm⁻³.

Results and Discussion

Three new cobalt(III) complexes, $[Co(H_2biim)_n(en)_{3-n}]^{3+}$ (n=1-3), were prepared from $[Co(CO_3)_n(en)_{3-n}]^{(3-2n)+}$ and $H_2biim \cdot H_2SO_4 \cdot 2H_2O$ in a mixture of water and DMF. All of the H_2biim complexes were completely resolved into their antipodes by SP-Sephadex column chromatography using $Na_2[Sb_2\{(+)_{589}\text{-tartrate}\}_2]$ as an eluent.

The complexes were identified by ¹H NMR spectroscopy. Table 1 lists the chemical shifts of the free H₂biim ligand and the complexes in the region of the imidazole ring CH protons. Each signal in NaOD solutions was observed at a higher magnetic field than the corresponding one in DCl solutions. The complexes in both acidic and basic aqueous solutions showed no change in the spectra after 2 d at room temperature. In the spectrum of the tris(H₂biim) complex, one of the resonances of the imidazole CH protons is observed at a higher field. Molecular models indicate that one of two imidazole CH protons in the complex is placed above the adjacent H₂biim ligand and is shielded by its ring current. The bis(H₂biim) complex also showed a high field shift. A similar high field shift was reported for [Si(1,1'-dimethyl-2,2'-biimidazole)₃]I₄.¹⁵⁾

Figure 1 shows that the absorption spectra of [Co(H_2 biim)-(en)₂]Cl₃·H₂O depend on the pH of solutions. The spectral changes can be divided into two steps corresponding to different isosbestic points at 392 and 430 nm. Thus, two stepwise acid-base equilibria are involved in the solutions. Figure 2 shows plots of the absorbances at 330 or 500 nm. The equilibria can be shown as Scheme 1. The p K_{a1} and p K_{a2} values were obtained as 5.9 ± 0.1 and 9.9 ± 0.1 at $25\,^{\circ}$ C, respectively. The results indicate that the H_2 biim ligand in this complex acts as a neutral molecule (H_2 biim), a monoanion (Hbiim⁻),

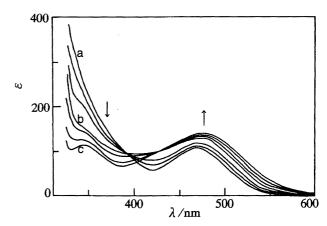


Fig. 1. Absorption spectra of $[Co(H_2biim)(en)_2]Cl_3 \cdot H_2O$ at 25 °C in aqueous solutions at various pH; in 0.1 mol dm⁻³ HCl (a), pH 5.5, 6.0, 7.9 (b), 9.5, 10.2, and in 0.1 mol dm⁻³ NaOH (c).

Compounds	In 0.1 mol dm ⁻³ DCl	In 1 mol dm ⁻³ NaOD
H ₂ biim ^{a)}	7.87(s)	
$[Co(H_2biim)(en)_2]^{3+}$	7.57(q, 4H) ^{b)}	7.19(q, 4H) ^{c)}
$[Co(H_2biim)_2(en)]^{3+}$	6.39(d, 2H), ^{d)} 7.37(d, 2H), ^{d)}	5.82(d, 2H), ^{e)} 6.71(d, 2H), ^{e)}
	7.79(br, 4H)	7.24(d, 2H), ^{f)} 7.33(d, 2H) ^{f)}
$[Co(H_2biim)_3]^{3+}$	6.72(br, 6H), 7.61(br, 6H)	6.20(br, 6H), 6.90(br, 6H)

Table 1. ¹H NMR Data in the Region of the Imidazole Ring CH Protons (δ from DSS)

a) Insoluble in 1 mol dm $^{-3}$ NaOD. b) AB quartet; J = 1.86 Hz. c) AB quartet; J = 1.20 Hz.

d) J = 1.56 Hz. e) J = 0.84 Hz. f) J = 1.08 Hz.

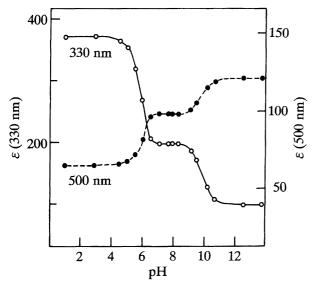


Fig. 2. Spectrophotometric titration curves for [Co(H₂biim)-(en)₂]Cl₃·H₂O in aqueous solutions at 25 °C.

$$(en)_{2}Co \bigvee_{N \bigcup_{N \bigcup_{H}}}^{3+} \bigvee_{pK_{a_{1}} \atop +H^{+}}^{pK_{a_{1}}} (en)_{2}Co \bigvee_{N \bigcup_{N}}^{N} \bigvee_{H^{+}}^{pK_{a_{2}}} (en)_{2}Co \bigvee_{N \bigcup_{N}}^{N}$$

$$Scheme 1.$$

and a dianion (biim²⁻) in acidic, near neutral, and basic aqueous solutions, respectively. In fact, the deprotonated neutral and anionic complexes, $(-)_{589}$ -[Co(Hbiim)₃]·2H₂O and $(-)_{589}$ -Ba_{1.5}[Co(biim)₃]·2H₂O were isolated from $(-)_{589}$ -[Co(H₂biim)₃](NO₃)₃·H₂O in buffer solutions of pH 8 and in strongly basic aqueous solutions, respectively (see Experimental). These deprotonated complexes gave again the protonated complex, $(-)_{589}$ -[Co(H₂biim)₃]³⁺ in 0.1 mol dm⁻³ HCl. Recently, Rillema et al.¹²⁾ reported the values of pK_{a1} and pK_{a2}, 7.2 and 12.1, respectively, for [Ru(H₂biim)-(bpy)₂]²⁺ (bpy = 2,2'-bipyridine).⁸⁾ Variations of pK_a values among different metal centers were observed for a similar deprotonation of [M(2,2'-bibenzimidazole)(bpy)₂]ⁿ⁺ (M=Os(III), Os(II), Ru(II)).¹⁶⁾

Figure 3 compares the absorption and CD spectra for the series of $(-)_{589}$ - $[Co(H_2biim)_n(en)_{3-n}]^{3+}$ (n=1-3) in 0.1 mol dm⁻³ HCl solutions. The spectral data are listed in Table 2. The first ligand field band $({}^1T_{1g}\leftarrow {}^1A_{1g})$ of [Co- $(H_2biim)_n(en)_{3-n}]^{3+}$ at ca. 21500 cm⁻¹ scarcely shifts by

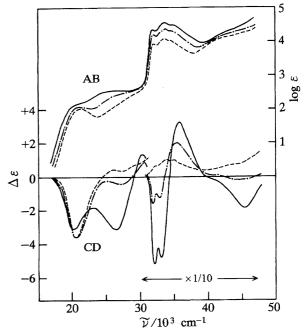


Fig. 3. Absorption and CD spectra of $(-)_{589}$ - [Co- $(H_2 \text{biim})_3$]³⁺ (--), $(-)_{589}$ -[Co($H_2 \text{biim})_2(\text{en})$]³⁺ $(-\cdot -)$, and $(-)_{589}$ -[Co($H_2 \text{biim})(\text{en})_2$]³⁺ $(-\cdot -)$ in 0.1 mol dm⁻³ HCl.

replacing en with H_2 biim, indicating similar ligand field strength ($10\ Dq$) of H_2 biim to that of en. The second ligand field band ($^1T_{2g} \leftarrow ^1A_{1g}$) seems to overlap other bands. For the $[Ru(H_2\text{biim})_3]^{2+}$ 12 and $[M(H_2\text{biim})_2]^{2+}$ (M=Cu(II) and Zn(II))¹⁷⁾ complexes, a band around at ca. 26000 cm⁻¹ was assigned to involve the ligand to metal charge-transfer transition. In the region of 30000 to 38000 cm⁻¹, the new cobalt(III) complexes exhibit strong absorptions, and the intensities are related to the number of the H_2 biim ligand. In the same region, almost the same absorptions were observed for the above Ru(II), Cu(II), and Zn(II) complexes, and were assigned to the $\pi^* \leftarrow \pi$ transitions of the coordinated H_2 biim ligand. H_2 biim ligand. H_2 biim ligand. H_3 biim ligand. H_4 biim ligand.

As Fig. 3 shows, all of the $(-)_{589}$ -isomers in 0.1 mol dm⁻³ HCl solutions exhibit negative CD in the region of the first ligand field band, and are assigned to have the Δ configuration on the basis of an empirical rule.¹⁸⁾ The $(-)_{589}$ -[Co- $(H_2 \text{biim})_3]^{3+}$ complex shows a strong negative CD band at ca. 25000 cm⁻¹ corresponding to the broad absorption band in this region. The band can possibly be assigned to a charge-transfer in origin. Alternatively, the strong CD may be re-

Table 2.	Absorption an	d CD Spectral	Data in 0.1	$mol dm^{-3} HCl$
----------	---------------	---------------	-------------	-------------------

Absorption $\tilde{\nu}_{\text{max}}/10^3 \text{ cm}^{-1} (\log \varepsilon)$		$\frac{\text{CD}}{\tilde{v}_{\text{ext}}/10^3 \text{ cm}^{-1} (\Delta \varepsilon)}$				
				H ₂ biim•H ₂ SO ₄ •2H ₂ O		
36.50(4.17)						
	$(-)_{589}$ -[Co(H ₂ t	oiim)(en) ₂]Cl ₃ ·H ₂ O				
21.32(2.02),	$29.5(2.5) \text{sh},^{a)}$	20.66(-3.57)	26.32(+0.34),			
32.10(3.93),	33.3(4.0)sh,	32.26(+5.85),	34.13(+9.65),			
33.78(4.10),	34.66(4.05),	34.90(+9.34),	42.4(+5.4)sh			
44.0(4.2)sh	, ,,	, , , , ,	, ,			
	(-) ₅₈₉ -[Co(H ₂ b	$\lim_{2} (en) Cl_3 \cdot 3H_2O$				
21.39(2.08),	29.0(2.6)sh,	20.62(-3.67),	27.03(-0.38),			
32.10(4.19),	33.4(4.3)sh,	30.67(+0.96)	31.95(-16.9),			
33.84(4.37),	34.72(4.33),	32.84(-12.0)	35.65(+20.4),			
44.0(4.2)sh	· //	44.44(-1.68)	, , ,			
	(-) ₅₈₉ -[Co(H ₂ t	oiim)3 (NO3)3 • H2O				
21.7(2.2)sh,	26.46(2.54),	20.20(-3.16),	26.39(-3.20),			
32.10(4.36),	33.0(4.5)sh,	30.58(+1.33),	32.15(-52.9),			
33.78(4.54),	34.66(4.51),	33.11(-48.4)	35.84(+32.9),			
43.5(4.3)sh	` "	45.25(-18.5)	` ''			

a) sh: Shoulder.

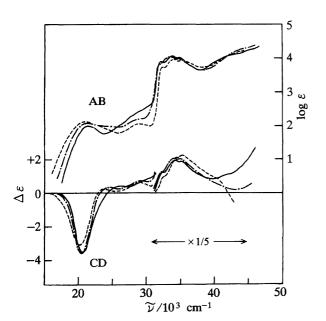


Fig. 4. Absorption and CD spectra of $(-)_{589}$ -[Co(H₂biim)- $(en)_2$]Cl₃·H₂O in 0.1 mol dm⁻³ HCl (—), in an ammonium chloride–aqueous ammonia buffer solution of pH 7.9 (-·-), and in 0.1 mol dm⁻³ NaOH (---).

lated to the adjacent very strong CD bands in the $\pi^*\leftarrow\pi$ transition region. But the details are unknown at present. In the $\pi^*\leftarrow\pi$ transition region, $(-)_{589}$ -[Co(H₂biim)₃]³⁺ exhibits a characteristic CD pattern with strong magnitude, two negative and one positive bands from the lower energy side. In the same region, $(-)_{589}$ -[Co(H₂biim)₂(en)]³⁺ also shows nearly the same CD pattern as that of $(-)_{589}$ -[Co(H₂biim)₃]³⁺, although the magnitude is reduced. On the other hand, $(-)_{589}$ -[Co(H₂biim)(en)₂]³⁺ and Δ -[Co-

Fig. 5. Absorption and CD spectra of $(-)_{589}$ - [Co- $(H_2\text{biim})_2(\text{en})$]Cl₃·3H₂O in 0.1 mol dm⁻³ HCl (—), in an ammonium chloride–aqueous ammonia buffer solution of pH 7.9 (-·-), and in 0.1 mol dm⁻³ NaOH (---).

(en)₃]^{3+ 19)} show no such a CD pattern. The characteristic strong CD of the tris- and bis (H₂biim) complexes should be assigned to the exciton interaction among the H₂biim ligands as observed for [M(phen)₃]ⁿ⁺ (phen = 1,10-phenanthroline) and [M(bpy)₃]ⁿ⁺.¹⁸⁾ The absolute configuration of Δ can be assigned to the (-)₅₈₉-[Co(H₂biim)₃]³⁺ complex, since its CD pattern is the same as that of Δ -[Co(phen)₃]^{3+ 20,21)} and Δ -[Co(bpy)₃]³⁺. ^{21,22)} The assignment agrees well with that based on the CD sign in the region of the first ligand field

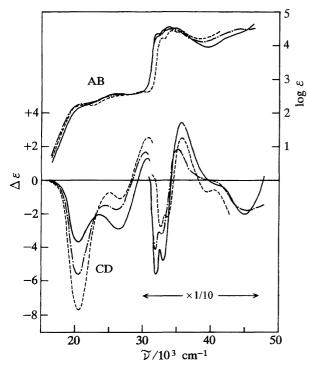


Fig. 6. Absorption and CD spectra of $(-)_{589}$ -[Co(H₂biim)₃]-(NO₃)₃·H₂O in 50% ethanol solutions containing HCl in 0.1 mol dm^{-3} (—), an ammonium chloride-aqueous ammonia buffer solution of pH ca. 8 (- · -), and NaOH in 0.1 $mol dm^{-3} (---).$

band.

Figure 4 shows the absorption and CD spectra of $(-)_{589}$ $[Co(H_2biim)(en)_2]Cl_3 \cdot H_2O$ in 0.1 mol dm⁻³ HCl, in ammonium chloride-aqueous ammonia buffer of pH 7.9, and in 1 mol dm⁻³ NaOH solutions. The first ligand field band slightly shifts to a lower energy side and broadens by increasing the pH of the solution. In the $\pi^* \leftarrow \pi$ transition, the absorption band slightly shifts to a higher energy side in 1 mol dm⁻³ NaOH solutions. The CD spectra are similar to one another over the whole region, although the spectra show a small change in magnitude and position with an increasing basicity of the solution.

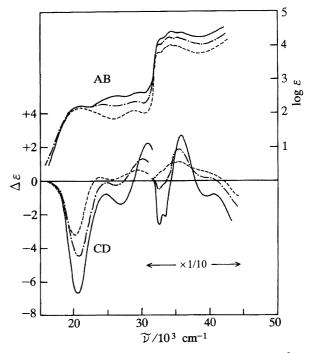


Fig. 7. Absorption and CD spectra of $(-)_{589}$ - $[Co(biim)_3]^{3-}$ (--), $(-)_{589}$ - $[Co(biim)_2(en)]^ (-\cdot-)$, and $(-)_{589}$ -[Co- $(biim)(en)_2$]⁺ (---) in 0.1 mol dm⁻³ NaOH.

As shown in Fig. 5, the absorption spectrum of $(-)_{589}$ [Co(H₂biim)₂(en)]Cl₃·3H₂O shows a pH-dependence similar to that of $[Co(H_2biim)(en)_2]^{3+}$. The CD magnitude in the region of the first ligand field band slightly increases with increasing basicity of the solution. In the region of the exciton CD, the magnitudes of the negative components are gradually reduced with increasing basicity of the solution, while the magnitude of the positive one is slightly decreased by deprotonation of the H₂biim ligands.

Figure 6 shows the absorption and CD spectra of $(-)_{589}$ -[Co(H₂biim)₃](NO₃)₃·H₂O in 50% ethanol solutions containing HCl in 0.1 mol dm⁻³, and ammonium chloride-aqueous ammonia buffer of pH ca. 8, or NaOH in 1 mol dm⁻³. The solvents were used because (−)₅₈₉-[Co(Hbiim)₃]·2H₂O

Table 3. Absorption and CD Spectral Data in Ethanol

Absorption $\tilde{v}_{\text{max}}/10^3 \text{ cm}^{-1} (\log \varepsilon)$		$\frac{\text{CD}}{\tilde{v}_{\text{ext}}/10^3 \text{ cm}^{-1} (\Delta \varepsilon)}$	
$21.5(2.3) \text{sh},^{a)}$	27.0(2.5)sh,	20.45(-5.70),	25.97(-1.81),
31.95(4.30),	33.61(4.47),	30.44(+1.75),	31.90(-42.5),
34.31(4.46),	45.0(4.5)sh	32.79(-32.3),	35.15(+18.8),
		45.25(-19.3)	
	$(-)_{589}$ -Ba _{1.5} [0	Co(biim) ₃]•2H ₂ O	
20.75(2.25),	27.0(2.5)sh,	20.56(-7.81),	26.63(-1.21),
29.41(2.60),	32.57(4.21),	30.96(+2.50),	32.57(-27.1),
34.31(4.43),	35.21(4.41),	33.54(-22.5),	35.84(+26.1),
		39.37(-6.58)	

a) sh: Shoulder.

is insoluble in water. The absorption spectra show a pH dependence similar to those of the mono- and bis(H₂biim) complexes. The CD spectra markedly depend on the pH of the solution. The CD magnitude in the region of the first ligand field band increases remarkably with increasing basicity of the solution. In the region of the exciton CD, the spectrum shows a change in magnitude similar to that of the bis(H₂biim) complex, reducing the magnitude with increasing basicity of the solution. Thus the magnitude of the exciton CD of the present cobalt(III) complexes is reduced by the deprotonation of the imino protons of H₂biim. As Table 3 shows, the absorption and CD spectra of $(-)_{589}$ -[Co- $(Hbiim)_3$] •2H₂O and $(-)_{589}$ -Ba_{1.5}[Co(biim)₃] •2H₂O in ethanol are almost the same as those of $(-)_{589}$ - $[Co(H_2biim)_3]^{3+}$ in 50% ethanol containing a buffer solution of pH ca. 8 and in 1 mol dm⁻³ NaOH, respectively.

Figure 7 compares the absorption and CD spectra of a series of $(-)_{589}$ -[Co(biim)_n(en)_{3-n}]⁽³⁻²ⁿ⁾⁺ (n = 1—3) in 1 mol dm⁻³ NaOH solutions. These three complexes show the first ligand field band at nearly the same position with similar intensity, while the CD magnitude in this region increases remarkably by replacing en with biim²⁻. The CD spectra of basic solutions in this region show marked contrast to those of acidic solutions shown in Fig. 3.

References

- 1) H. Debus, Justus Liebigs Ann. Chem., 107, 199 (1858).
- 2) A.D. Mighell, C. W. Reimann, and F. A. Mauer, *Acta Crystallogr.*, Sect. B, **B25**, 60 (1969).
- 3) M. A. Martinez Lorente, F. Dahan, Y. Sanakis, V. Petrouleas, A. Bousseksou, and J.-P. Tuchagues, *Inorg. Chem.*, **34**, 5346 (1995), and references therein.
- 4) K. Lehmstedt, *Justus Liebigs Ann. Chem.*, **456**, 253 (1927); F. Holmes, K. M. Jones, and E. G. Torrible, *J. Chem. Soc.*, **1961**, 4790; I. G. Dance, A. S. Abushamleh, and H. A. Goodwin, *Inorg. Chim. Acta*, **43**, 217 (1980).
- 5) A. S. Abushamleh and H. A. Goodwin, *Aust. J. Chem.*, **32**, 513 (1979).
- 6) D. Boinnard, P. Cassoux, V. Petrouleas, J.-M. Savariault, and J.-P. Tuchagues, *Inorg. Chem.*, **29**, 4114 (1990); M. A. Esteruelas, F. J. Lahoz, L. A. Oro, E. Oñate, and N. Ruiz, *Inorg. Chem.*, **33**, 787 (1994).
 - 7) Von W. Beck, F. Götzfried, and M. Riederer, Z. Anorg. Allg.

- Chem., 423, 97 (1976); R. Uson, J. Gimeno, L. A. Oro, M. A. Aznar, and J. A. Cabeza, *Polyhedron*, 2, 163 (1983); M. P. Gamasa, E. Garcia, J. Gimeno, and C. Ballesteros, *J. Organomet. Chem.*, 307, 39 (1986).
 - 8) E. V. Dose and L. J. Wilson, *Inorg. Chem.*, 17, 2660 (1978).
- 9) Presented in part at "the 32nd Symposium on Coordination Chemistry," Nagasaki, October 1982, Abstr., No. 2A16.
- 10) Recently, the preparation and molecular structure of racemic [Co(Hbiim)₃] were reported. T. Shiomi, M. Tadokoro, K. Matsumoto, and K. Nakasuji, "the 45th Symposium on Coordination Chemistry," Fukuoka, October 1995, Abstr., No. 3AP41.
- 11) See for example: S. W. Kaiser, R. B. Saillant, W. M. Butler, and P. G. Rasmussen, *Inorg. Chem.*, **15**, 2681, 2688 (1976); D. Carmona, J. Ferrer, A. Mendoza, F. J. Lahoz, L. A. Oro, F. Viguri, and J. Reyes, *Organometallics*, **14**, 2066 (1995).
- 12) D. P. Rillema, R. Sahai, P. Matthews, A. K. Edwards, R. J. Shaver, and L. Morgan, *Inorg. Chem.*, **29**, 167 (1990), and references therein.
- 13) M. Shibata, Nippon Kagaku Zasshi, 87, 771 (1966).
- 14) The buffer solutions used in this study: acetic acid-sodium acetate, hydrochloric acid-tris (hydroxymethyl)aminomethane, and ammonium chloride-aqueous ammonia.
- 15) D. Kummer, K. E. Gaisser, J. Seifert, and R. Wagner, Z. *Anorg. Allg. Chem.*, **459**, 145 (1979).
- 16) M. Haga, *Inorg. Chim. Acta*, **45**, L183 (1980); A. M. Bond and M. Haga, *Inorg. Chem.*, **25**, 4507 (1986).
- 17) E. E. Bernarducci, P. K. Bharadwaj, R. A. Lalancette, K. Krogh-Jespersen, J. A. Potenza, and H. J. Schugar, *Inorg. Chem.*, **22**, 3911 (1983).
- 18) C. J. Hawkins, "Absolute Configuration of Metal Complexes," Wiley-Interscience, New York (1971); S. F. Mason, "Molecular Optical Activity and the Chiral Discriminations," Cambridge University Press, Cambridge (1982).
- 19) M. Kojima, H. Yamada, H. Ogino, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **50**, 2325 (1977).
- 20) J. Ferguson, C. J. Hawkins, N. A. P. Kane-Maguire, and H. Lip, *Inorg. Chem.*, **8**, 771 (1969).
- 21) Y. Sasaki, J. Fujita, and K. Saito, *Bull. Chem. Soc. Jpn.*, **43**, 3462 (1970); S. F. Mason and B. J. Peart, *J. Chem. Soc.*, *Dalton Trans.*, **1973**, 949.
- 22) S. F. Mason, B. J. Peart, and R. E. Waddell, *J. Chem. Soc.*, *Dalton Trans.*, **1973**, 944; Y. Ohashi, K. Yanagi, Y. Mitsuhashi, K. Nagata, Y. Kaizu, Y. Sasada, and H. Kobayashi, *J. Am. Chem. Soc.*, **101**, 4739 (1979); K. Yanagi, Y. Ohashi, Y. Sasada, Y. Kaizu, and H. Kobayashi, *Bull. Chem. Soc. Jpn.*, **54**, 118 (1981).